Library

StatsTest Blog

Experimental design, data analysis, and statistical tooling for modern teams. No hype, just the math.

StatsTest
Causal InferenceJan 29New

Causal Inference for Tech: When You Can't Run an Experiment

A practical guide to causal inference methods for product and data analysts when A/B tests aren't possible. Covers PSM, IV, RDD, DiD, and more.

StatsTest
Causal InferenceJan 29New

Confounding: The One Thing That Breaks Every Observational Study

What confounding is, why it invalidates naive causal claims, and how to identify and handle confounders in product analytics and observational studies.

StatsTest
Causal InferenceJan 29New

DAGs for Analysts: Drawing Your Assumptions Before You Analyze

How directed acyclic graphs help analysts identify confounders, avoid collider bias, and choose the right variables to control for in causal analysis.

StatsTest
Causal InferenceJan 29New

Double/Debiased Machine Learning: Causal Effects with Flexible Models

How double/debiased machine learning combines ML flexibility with valid causal inference. Learn cross-fitting, Neyman orthogonality, and practical DML workflows.

StatsTest
Causal InferenceJan 29New

Instrumental Variables: Finding Natural Experiments in Product Data

How instrumental variables let you estimate causal effects when unmeasured confounding makes direct comparison impossible. Practical IV examples for tech.

StatsTest
Causal InferenceJan 29New

Mediation Analysis: Does Feature X Work Through Mechanism Y?

How mediation analysis identifies the causal mechanisms behind product effects. Learn when and how to decompose total effects into direct and indirect paths.

StatsTest
Causal InferenceJan 29New

Propensity Score Matching: Balancing Groups Without Randomization

Learn how propensity score matching creates balanced comparison groups from observational data when randomized experiments aren't possible.

StatsTest
Causal InferenceJan 29New

Regression Discontinuity: When Thresholds Create Experiments

How regression discontinuity designs exploit score cutoffs to estimate causal effects. A practical guide for product analysts with real-world examples.

StatsTest
Causal InferenceJan 29New

Synthetic Control: Building a Counterfactual for Geo Tests

How the synthetic control method builds a data-driven counterfactual from donor units to estimate causal effects in geo tests and market-level rollouts.